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Abstract-Convective heat transfer for steady laminar flow between two confocal elliptic pipes with 
longitudinal uniform wall temperature gradient under various heating conditions is presented in analytical 
closed form utilizing the exact solutions of the Navier-Stokes and energy equations. It is shown that one 
characteristic number, the product of the dimensionless longitudinal uniform wall temperature gradient 
and Peclet number, effects the problem. The values of Nusselt numbers for several values of ellipticity 

and core size are obtained. 

NOMENCLATURE 

A, B, semi-axes of outer periphery; 

Aol>Bol>&n, functions defined by 
equations (A.2); 

A,, B,,, semi-axes of inner periphery; 

al, a factor defined by equation (3.12); 

c, c, dimensional and dimensionless 

temperature gradients along the pipe; 

D, hydraulic diameter defined by 
equation (5.8); 

DENO, DENI, functions defined by 
equation (5.19); 

(DE),, (DE),, DE factors defined by equations 

(5.14) and (5.15); 

dU, element of heat flux in the direction of 
5 across an element of 5 = const. 
elliptic cylinder; 

E, e, dimensional and dimensionless excess 
temperatures; 

Ei” 1 excess temperature of inner pipe; 
E 

EII:E,, 

mixed mean excess temperature; 
elliptic integrals of the second kind for 
outer and inner walls, respectively; 

E&z, Ed, factors defined by equations (3.7); 

F, a characteristic heat flux defined in 
equations (3.5); 

G, a dimensionless factor defined in 
equations (3.7); 

s0,f0&,e0,e2,e4, coefficients defined in 

equation (3.9); 

H,h, dimensional and dimensionless heat 
generation densities; 

I 001 a function defined by equation (2.13); 
I 013 a function defined by equation (A.l); 

J, a function defined by equation (5.16); 

Ko> K1, &, &r K4, functions defined by 

k, 
L 03 

m, 

NM,, Nui: 

Pe, 
p, P> 

Pr, 

p0T pi3 

Re, 
S. dS. 

equations (6.2); 

thermal conductivity; 
mean of the semi-axes of outer 

periphery; 

coefficient of ellipticity defined by 
equation (2.6); 

Nusselt numbers on outer and inner 
walls; 

Peclet number; 
dimensional and dimensionless 
pressures; 
Prandtl number, v/u, 
circumferences of outer and inner 
peripheries ; 
rate of mass flow; 
rate of mass flow for a simple elliptic 

pipe 
Reynolds number; 
full and elemental cross sectional 
areas of elliptic annular pipe; 
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?; temperature; 

T,. 7;, outer and inner wall temperatures; 
T rn? mixed mean temperature; 

t, alternate elliptic coordinate, t = log t; 

r/i, UO, heat fluxes from inner and outer walls; 

WI 1 vo. WI, Y”, &I, functions defined by 
equations (A.4); 

U2, V2,Z2, functions defined by equations (A.6); 

rl,, -G 
u, 
V, 
w, M‘. 

w,, u’2. 

x, Y, & y. 

x2. 

functions defined by equations (A.8); 

a function defined in equations (2.11); 
velocity vector; 

dimensional and dimensionless 

velocities; 

functions defined by equations (2.11); 
dimensional and dimensionless 

transversal coordinates; 
a function defined by equation (2.8); 

XJ,,.J,.J,. integrals defined in equation (5.17); 

z, z, dimensional and dimensionless 

longitudinal coordinates. 

Greek symbols 

thermal diffusivity; 

factors defined by equations (4.4) and 

(4.5); 
factors defined by equations (4.7) and 

(4.8); 
ratio of i to &, i/i., ; 
coefficient of viscosity; 

kinematic viscosity; 
dimensionless elliptic coordinates; 

density; 

elliptic coordinate of the point where 
velocity is maximum; 

elliptic coordinate of inner periphery. 

1. INTRODUCTION 

CONVECTIVE heat transfer in steady laminar flow for 

various geometries have been extensively covered in 
existing literature. Kays [l] has discussed the majority 
of the more important cases and has given the heat 
transfer results. However, the one important case of 
heat transfer between two confocal elliptic pipes with 
various wall heating conditions is not included in these 
studies. Besides the scientific interest of this case, the 
design of a heat exchanger in a narrow space may 
require information on convective heat transfer in 
annular elliptic pipes. Additionally, the limiting case of 
an elliptic pipe with a flat core, heated or cooled 
independently on its internal and external walls, may 
also find useful engineering applications. 

The problem analyzed here is the convective heat 

transfer in a steady laminar flow between two pipes 
having confocal elliptic cross sections with walls heated 

or cooled independently and subjected to uniform 
longitudinal wall temperature gradients. In obtaining 
the velocity and temperature fields, a uniform heat 

generation is included. However. for the derivation of 
heat-transfer coefficients on the inner and outer walls, 

the heat generation is omitted. The velocity and 
temperature distributions are obtained as exact 
solutions of the Navier-Stokes and energy equations, 

respectively; and are presented in closed forms. 
It is shown that the temperature distribution, 

equation (3.9) and heat transfer, equation (4.11), 

through the walls are affected by one parameter which 
is the product of the dimensionless applied uniform 

longitudinal1 wall temperature gradient and the 

Peclet-Pr~number in addition to the geometric 
parameters of the cross section of the walls. The 
Nusselt-Nu+numbers for the inner and outer walls 

are obtained explicitly and are calculated for thirteen 

different values of the flatness ratio of the outer pipe 
and for five typical wall heating combinations.* These 

results are given in tabular form. For four values of 

the ellipticity and for the special case of ellipticity 
equal to the core size. the results are also given 

graphically to illustrate the heat-transfer characteristics 
of the problem. The results for the special case of 
circular annular pipes are compared with the data as 

obtained by Lundberg et ul. [2]. and agreement is 
found within the limits of the number of significant 
digits as given in this reference. 

2. VISCOUS FLOW IN ANNULAR ELLIPTIC PIPES 

The velocity W for steady laminar flow of a viscous 
fluid flowing in a straight conduit under a uniform 
longitudinal pressure gradient ?F’/c’Z satisfies the 

equation 

where Z is the longitudinal coordinate in the direction 
of flow, X and Y are the rectangular transverse 
coordinates, P is the pressure and ,UU is the dynamic 
coefficient of viscosity of the fluid. Let the semi-major 
and semi-minor axes of the cross section of the outer 
elliptic pipe be A and B, respectively. Denoting the 
mean of the semi-axes of the elliptic section of the 

outer pipe by 

L = +(A+E) (2.2) 

*Due to the page restriction only three tables for 
ellipticity equal to 0.0,0.7 and 0.8 are included. The remain- 
ing tables for ellipticity equal to 0.1, 0.2, 0.3, 0.4, 0.5. 0.6. 0.9, 
0.94,0.96 and 0.98 may be obtained from either author upon 
request. 
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and using the transformations 

X=Lx, Y=Ly, Z=Lz, w+v, 

ap PUV ap 
Z- ~3 aZ 

(2.3) 

where v is the kinematic viscosity and the lower case 
letters are the dimensionless forms of their upper case 

counterparts, (2.1) may be nondimensionalized. The 
right hand side of the new differential equation will 
include only one parameter, the Reynolds number. 

A simple definition of Reynolds-&-number for 

a pipe with non-circular cross section is described in 
[3]. According to this, the Reynolds number for an 

elliptic annular pipe of mean outer radius Lo and 

under a pressure gradient ;IP/aZ is defined by the 
Reynolds number in a simple circular pipe of radius 

Lo under the same pressure gradient. This definition 
is used in this work. 

The elliptic boundaries require the use of elliptic 
coordinates. Taking the origin of the coordinates x 

and y at the centerline of the pipe, the dimensionless 

elliptic coordinates, 5 and 11, can be obtained from 
equations: 

y=< 1-f sinq (2.4) 
( ) t2 

where m, a positive constant between zero and one, 

depends upon the size of the semi-major and semi- 
minor axes of the outer pipe. Letting the periphery 
of the inner pipe be an ellipse, confocal with that of 

the outer pipe, having an elliptic coordinate o and 
semi-major and semi-minor axes A, and B,, 
respectively, we have 

5 = 1 on the outer periphery 

5 = o on the inner periphery (2.5) 

and 

A = (1 +m2)L, B = (1 -m’)L 

A.,=a,(l+$)L, Bw=o(l-$)L 

m=[(l-~)/(l+~)~‘z (2.6) 

Using an alternate system as, t = log< and ‘I, the 
differential equation for w changes to 

w = -4Re(x2-2m2cos2q) (2.7) 

where 

m4 
x2 = 52 + - 

t2 

together with the boundary conditions 

w=O at t=l and t=w 

or at t=O and t=logo. 
(2.9) 

The solution is obtained as 

w = Re(w, - w2 cos 2Y/) (2.10) 

where 

wo=(1-t2) I-$ +ulogt 
( > 

w2=$$(‘-r:) 1-g 
( > 

m4 
u= -(l-o?) 1 - - 

( 11 cl? 
logo. (2.11) 

One important fact of this field concerns the locations 

where the velocity is a maximum. The velocity, w, 

reaches maximum values at two symmetric points on 

the minor axis of the cross-section, one above and one 

below the origin, having the elliptic coordinate 5, 
whose square is 

x l+ 
[ J( 

m2(1+w2)(1+m2)+2(m2+~2) 

1+161(2 (1 f&)2 >I. 
(2.12) 

The rate of mass flow through the annulus of the 
elliptic pipes is 

where 

Q = 2n(pu)L Re lo0 (2.13) 

m8 
b,=t(l-~~) 1 + 2 ( > -2m 

4(l-m2) 
(1+w2) 

(2.14) 

For the case of circular concentric pipes, m = 0, Q 
reduces to that of [4]. 

The rate of mass flow expression, (2.13), by using 
the expression of the rate of mass flow, Qs, [4] for a 
simple elliptic pipe of semi-axes A and B can also be 
written as 

Q -_=4 (l+m’) 

QS (I-m4)3100 
(2.15) 

which represents the reduction of flow due to the 
presence of the inner pipe. 

3. TEMPERATURE DISTRIBUTION 

Consider an elliptic annular pipe subjected to two 
independent axially uniform heat fluxes through its 
inner and outer walls. Along the length of the pipe 
where the velocity and temperature distributions are 
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fully developed, the temperature distribution must have 
the functional form 

T = cz+E(X. Y) (3.1) 

where C is the constant temperature gradient along the 

pipe. Furthermore, presume that each of the inner and 
outer wall temperature distributions are peripherally 

uniform. Then, the second term E(X, Y) of equation 

(3.1) represents an excess temperature for which one of 
the end values can be taken as zero without loss of 

generality. Selecting the outer value as zero and 

denoting the inner value by E,,, the boundary 
conditions of E(X, Y) in terms of the elliptic coordinate 

< satisfy 

density h. is affected only by one dimensionless 
parameter G. the product of the dimensionless uniform 
longitudinal wall temperature gradient and the Peclet 
number. 

The solution of (3.6) is obtained as 

e = c,:n .40 + h(.fb +.12 cos 2B) 

+C;(~,+C~~COS~~~+~~COS~~) (3.9) 

where 

log 5 
~ Jo = &, 

go = logtu’ 3 f; = -$W2 (3.10) 

and 

E(1) = 0. E(W) = E,, (3.2) eo = -$(l frn4)W~f&?r%2 

and the outer and inner wall temperatures, T, and 

x, at any station Z become 

T,=CZ, T=TO+Ei,. (3.3) 

Including a uniform heat generation density, H, and 
neglecting the viscous dissipation, the temperature 
distribution satisfies the steady state energy equation 

++-$1 +$j+r,@log;] (3.11) 

(3.4) 
where 

where V is the velocity vector. z is the thermal 
(3.12) 

diffusivity, k is the thermal conductivity. Using a 

characteristic heat flux, F, such as the averaged heat 
flux from the outer and inner walls. and the trans- 

formations 

the energy equation can be non-dimensionalized. The 
result in the elliptic coordinates is 

e = -h(x2-2m2cos2q) 

+G(E,-E,co~~~+E,C~~‘!~) (3.6) 

where 

G = cPe 

E, = xzw,fm2w, 

E2 = 2m2w,+x2 w2 

E4 = m2w2 (3.7) 

and Pe represents the Peclet number. The boundary 
conditions for excess temperature in terms of the elliptic 
coordinate < are 

e(l) = 0, e(w) = e,n (3.8) 

For the simple case of a circular pipe, m = 0 and 
w = 0, the elliptic coordinate 5 becomes the polar 
radial coordinate Y and equation (3.9) reduces to that 
of [5]. 

4. HEAT FLUXES THROUGH THE WALLS 

The element of heat flux, dU, measured in the positive 
direction of 5 through an elemental area of < = const. 

cylindrical surface is 

where e,” is the dimensionless excess temperature on 
the inner wall. 

(4.1) 

The equation of e, (3.6) shows that the excess The heat gain rates ui and C’, , per unit length of inner 

temperature distribution, besides the heat generation and outer pipes respectively, which are taken to be 
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positive when heat flows into the fluid, are expressed 

as 
^ 

From the inner wall: Vi = - LFw 
so 

” E 
0 ay <=wdn 

dq. (4.2) 

Neglecting the heat generation and substituting e from 

equation (3.9) one obtains 

ui = _2nLFGB+4bwwJ 
log 0 (4.3) 

u. = 2xLFG8+4(l)hzw 
log w 

with e:(w) and e:(l) being the derivatives of e with 

respect to 5 evaluated at [ = w and 5 = 1 and 

(4.4) 

which is an alternate definition for the dimensionless 
inner wall excess temperature. 

Two special values of jj’ are as follows: 
For insulated outer wall (UO = 0): 

p = bi = -eb(l)logw 

For insulated inner wall ( Ui = 0): 

fl = /Jo = - eb(w)w log w (4.5) 

the difference between these being 

Pi-B0 = -Io,lOgW. (4.6) 

The ratio, i, of the heat gains from the outer wall 

to that of from both walls per unit length of pipe is 
obtained as 

(4.7) 

depending only on the dimensionless inner wall 
temperature 8. 

For the special case of equal wall temperatures, 
T, = T(p = 0) the ratio 1 is 

a 

0 

_ 441) 
loo 

(4.8) 

where 

(1 -cl?) 
e:(l) = a(1 -m*)- (l +02) ------m4-~u(l frn4) 

-&L(l-twZ) 1,;; +$l*fQ. (4.9) 
( > 

Noting from the equation (2.13) that IO0 > 0, the sign 
of e;(l) must be the same as that of 1,. 

Introducing the ratio, p = a/,&,, the alternate 

dimensionless inner wall excess temperature, /I, can 

also be expressed as 

/3 = -(1-p)eb(l)logw. (4.10) 

After substituting this into equation (4.3), the inner and 

outer heat fluxes are reduced to 

CJO = 271 LFGpeb( 1) 

Ui = 2nLFG[Zoo-peb(l)]. (4.11) 

For three special cases the values of 1, /3 and p are: 
For insulated outer wall (U, = 0): i = 0, D = /Ii, 

p = 0; 

For equal wall temperatures (T, = T): 1. = A,, b = 0, 
p= 1; 

For insulated inner wall (Vi = 0): i = 1, /I = &, 

/J = PC, = l/&t (4.12) 

For the cases of equidirectional heat fluxes through 

both walls p must fall into the following ranges: 

P ’ PO 

For A> 1 -1<;<o 
0 

p = -n2/.Lo 

For I < 0 
CJ 
I< -1 
U0 

(4.13) 

where n* is any positive factor. 
Now it is clear that any possible combinations of the 

heat fluxes through the walls can be represented by 
either of the parameters 1 or p as illustrated in Fig. 1. 

, 

FIG. 1. All possible heating combinations for inner 
and outer walls. 

4 

J 
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5. CONVECTIVE HEAT-TRANSFER COEFFICIENTS 

The mixed mean or bulk temperature, T,, at any 
station Z is defined by 

T, = $ s WTdS 
s, 

where S and dS are full and elemental cross sectional 

areas respectively. A mixed mean excess temperature, 

E,, can be similarly defined as 

E,= T,s=$ WEdS. 
J 

(5.2) 
s 

Substituting for Q from (2.13), this becomes 

where 
(5.3) 

(5.4) 

Noting that, for noncircular cross sections, 
peripherally uniform temperature distributions do not 

correspond to uniform heat tlux distributions around 

the peripheries, the mean convective heat-transfer 

coefficients h, and hi for the outer and inner walls may 
be defined from the equations 

U0 = (T,- TmfPolzu, Ui = (T-Tm)Pihi (5.5) 

where P,, and Pi are the circumferences of the outer 

and inner elliptic pipes. Employing equations (3.3) and 
(5.2), these may be re-expressed as 

U0 = - E,P,h,, Ui = -jE,-E,,)Pihj. (5.6) 

Dimensionless mean convective heat-transfer 
coefficients (the Nusselt numbers) for the outer and 

inner walls based on the hydraulic diameter of the 
pipe are then 

NM, = %$; Nu, = ;hi (5.7) 

where 

(S.8) 

represents the hydraulic diameter of the elliptic annular 
pipe. 

The circumferences of the outer and inner pipes are 

PO = 4AE1, Pi = 4A,,, E, (5.9) 

where E, and E, are complete elliptic integrals of the 
second kind which are functions of the eccentricities 
of the outer and inner pipes, 

2m 2 
i(l) = ~ 

(1 +m’)’ 
i(w) = - 

r I 
I+$ 

3, (5.10) 

and 0. A. ARNAS 

respectively. Substituting equations (2.6) and (5.9) into 

equation (5.8) 

Also by using equations (3.7), (4.4) and (5.3) the factor 
in the second equation of (5.6) can be changed to 

(5.12) 

Now substitutionof equations (4.11),(5.3),(5.9),(5.1 I), 
and (5.12) into equation (5.7) yields the Nusselt numbers 

-i00 
Nu, = (DE), -- 

i 1 .J/G 
p;(l), 

NUi = (DE),, 
loo - &A t 1 

PO0 + ; 

loo (5.13) 

and 

ms 
(1 -ru2) 1 + -- 

DE= c 1. OJz 

(l+m2)E1+ 1 +zl 
! I 

(5.15) 

o&,, 

The integral J in the case of no heat generation 

density is calculated as 

(5.16) 

where 

and 
1 

/?I’= (1 -fi)f,, e;(l), I,, = 
I 

(E,log$d<. (5.18) 
<>I 

The denominators of Nu, and Ntci, equation (5.13). 
are also obtained as 

DENU = (1 -/~)l~~r;(l)+J~+J~+Jj 

DENJ = DENO-(l-~)IOO~~(l)~ogco. (5.19) 



Heat transfer for flow between two confocal elliptic pipes 

Upon substitution of equation (5.19) into equation 

(5.13) the Nusselt numbers then become 

1493 

wall and equal wall temperatures, its values were given 

in equation (4.12). For calculation purposes, two 
additional special values were selected as 

NM, = (DE), &$ 
[ 1 IO,,, 

Nui = (DE),,[I”;;zl)]!,, (5.20) 

The results for the integrals JoI, Jo, J2, J4 are given 
in the Appendix. 

6. NUSSELT NUMBERS ON THE OUTER AND 
INNER WALLS 

From equations (A.3), (A.5) and (A.7) of the 
Appendix, the last three terms of DEN0 in equation 

(5.19) reduce to 

48(Jo+J2+J4)=KO+K1u+K2u2fK~u3 

+&m410gw (6.1) 

where 

-;(,+,,,,I-o’)(l+ZJ(l-$) 

K,=;(l-w4)(l+$)+;(k2)(l+$ 

co4 
K= -24(1+&)2 (6.2) 

Now since all the terms involved in equation (5.20) 
are expressed by equations (2.14), (4.9), (A.l) and (6.1), 
the equations (5.20) form analytic closed expressions 
for the outer and inner Nusselt numbers. 

The values of the parameter p depend on the desired 
heating and cooling combinations on the walls. For 
three special cases, insulated inner wall, insulated outer 

(6.3) 

which represent heating and cooling conditions where 
the wall heat fluxes are equidirectional (of opposite 

sign). 
With these five different values of p, the numerical 

values of the outer and inner Nusselt numbers were 
calculated over the range of the values of m and w. 

The results were tabulated* and plotted in Figs. 2-6 
for four values of the ellipticity, m, and also for m = cu. 

where the inner pipe reduces to a flat core. 

kild3 Subscripts 
I Insulated Inner wall 

I wall temperature 
ated outer wall 
directional fluxes. U, * -2 
directional fluxes lJ - -2, 

tPmfi-_i Ellipticity :m=o.o k 

Core size, CL 

FIG. 2. Variation of Nusselt number with core size 
for circular annular pipes. 

The values of w numerically start from 0.00005 since 
the inner Nusselt numbers approach infinity as w 

approaches zero. As w approaches unity, the 
expressions for outer and inner Nusselt numbers 
become indeterminate forms of higher order in terms 
of (1 -II?). For this reason, the limiting values of the 
Nusselt numbers for w equal unity could not be 
obtained by numerical computation. However, these 
values can be and were obtained by graphical extra- 
polation and are shown on the plots. 

*See footnote on p. 1488. 
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S Equidirectlonal fluxes. u, = - 2 Li, 

I I I ” Elhpt,clty m=0.2 (B~~=o-9z3) 

Subscripts 

0 Outer pipe 
i Inner p,pe 
I Insulated inner wall 

2 Equal wall temperature 

, Insulated outer wall 

4 Equidrectlonol fluxes. u,= -2L 
5 Equidirectionol fluxes, u, =-24 

Core size, 51 

FIG. 3. Variation of Nusselt number with core size for 
ellipticity of 0.2. 

Core size, L2 

FIG. 5. Variation of Nusselt number with core size for 

ellipticity of 0.8. 

0 Outer pipe 

Inner pipe 
I Insulated inner wall 

2 Equal wall temperature 

s Insulated outer wall 

4 Equidirectional fluxes. U, = - 2U, 

5 Equldirectionol fluxes. U, = -2U, 

05 0.6 o-7 0.8 

Core size, Sl 

3.52 

x--l Subscripts 

0 : outer pipe 
i : Inner pipe 
I Insulated ,nner wall 

2 Equal wall temperature 
3 : Insulated outer w0II 
4 : Equidirectional fluxes, U, -- 24 

5 : Equidirectionol fluxes, u, =-2u0, 

I 

I I I I I- 
0.2 0.4 O-6 0.8 I-0 

El liptlcity. m 

FIG. 4. Variation of Nusselt number with core size 
for ellipticity of 0.5. 

FIG. 6. Variation of Nusselt number with ellipticity 
for a pipe with a flat core. 



Table 1 
Ellipticity = 0.00000; Outer pipe flatness (B/A) = 1.00000 

Core 
size 

Insulated 
inner 
wall 

Insulated Outer flux Inner flux 
outer Equal wall temperature -= -2 -= -2 

wall 
Inner flux Outer flux 

Omega 
NUSSO NUSSI NUSSO NUSSI NUSSO NUSSI NUSSO NUSSI 

NU NU NLl NLl Nfi Nli Nil Nli 

0~00005 4.513587 4492.779343 4.748549 7467.305433 3.433289 4227.938197 I.998385 4423.506422 

@02000 4.734244 32.705116 5.404413 55.3 19672 3.633721 28.015864 2.140790 31.391549 

0~04000 4.778025 2@509247 5.602903 34.712268 3.685243 17.039185 2.185623 19.515647 

0.06000 4.803225 15.933494 5.746783 27.026163 3.720719 12.936929 2.219852 15.061335 

0.08000 4.820699 13.468057 5.864669 22.832515 3.749275 10.727405 2.249432 12.65949 1 

0~10000 4.834212 11.905784 5.966896 
@12000 4.8455 11 10.819024 6.058514 
014000 4.855541 lo.015642 6.142415 
0.16000 4.864854 9.395756 6.220420 
0.18000 4.873796 8.901996 6.293761 

20.161660 3.774073 
18.293714 3.79659 1 
16.904935 3.817634 

9.325270 2.276421 11.135428 
8.347368 2.301777 10.073345 
7.621986 2.326021 9.286541 
7.060022 2.349468 8.678000 
6.610373 2.372316 8.192013 

15.826880 3.837680 
14.962723 3.857036 

0~20000 4.882587 8.498921 6.363308 14.252605 3.875905 6.241502 2.394701 1.794174 
0~22000 4.891374 8.163384 6.429106 13.657401 3.894425 5.932828 2.416716 7.462014 
0.24000 4.900254 7.879590 6.493442 13.150394 3.912695 5.670313 2.438430 7.180200 
0.26000 4.909293 7.636367 6.554895 12.712675 3.930787 5.444035 2.459891 6.937889 
0.28000 4.918534 7.425580 6.614367 12.330461 3.948750 5.246767 2.481137 6.727184 

0~30000 4.928005 7.241154 6.672101 
0.32000 4.937122 7.078457 6.128297 
0~34000 4.947694 6.933891 6.783121 
0.36000 4.957926 6.804620 6.836713 
0.38000 4.968418 6.688370 6.889189 

11.993456 3.966623 5.073 114 2.502197 
11.693801 3.984434 4.9 1896 1 2.523093 
11.425388 4.002205 4.781113 2.543843 
11.183393 4.019950 4.657046 2.564460 
10.963953 4.037681 4.544740 2.584956 

6.542188 
6.378404 
6.232337 
6.101231 
5.982880 

0~40000 4.979165 6.583303 6.940652 lo.763935 4.055406 4442559 2.605340 
0.42000 4.990164 6.487912 6.991188 10.580772 4.073133 4.349160 2.625620 
0.44000 5.001408 6.400949 7.040874 lo.412334 4.090865 4.26343 1 2.645801 
0.46000 5.012890 6.321374 7.089775 
0.48000 5.024601 6.248310 7.137950 

0~50000 5.036533 6.181015 7.185449 
0.52000 5.048678 6.118854 7.232320 
@54000 5.061027 6.061284 7.278603 
@56000 5.073572 6.007834 7.324333 
058000 5.086304 5.958094 7.369546 

10.256845 4.108605 
lo.112805 4.126355 

9.978945 4.144118 
9.854175 4.161892 
9.737562 4.179679 
9.628297 4.197479 
9.525676 4.215289 

4.184445 2.665890 
4.111419 2.685890 

5.875494 
5.777610 
5.688012 
5.605690 
5.529789 

4.043689 2.705806 5.459587 
3.980687 2.725640 5.394465 
3.921926 2.745396 5.333892 
3.866983 2.765076 5.277410 
3.8 15492 2.784683 5.224619 

0.60000 5.0992 15 
062000 5.112297 
0.64000 5.125542 
0.66000 5.138944 
0~68000 5.152493 

0~70000 5.166184 
0.72000 5.180010 
0~74000 5.193965 
0.76000 5.208042 
0~78000 5.222236 

5.911709 7.414269 
5.868366 7.458531 
5.827790 7.502356 
5.789736 7.545166 
5.753990 7.588782 

9.429083 4.233111 
9.337980 4.250943 
9.251889 4.268783 
9.170390 4.28-6632 
9.093105 4.304487 

3.767130 2.804218 5.175170 
3.721618 2.823683 5.128758 
3.678705 2.843080 5.085114 
3.638172 2.862410 5.043998 
3.599823 2.881674 5.005201 

5.720359 7.631423 9.019702 4.322348 3.563484 2.900874 4.96853 1 
5.688670 7.673706 8.94988 1 4.340213 3.528998 2.920012 4.933822 
5.658771 7.715647 8.883373 4.358081 3.496226 2.939087 4.90092 1 
5.630522 7.757261 8.819936 4.375951 3.465041 2.958101 4.869693 
5.603800 7.798562 8.759350 4.393823 3.435329 2.977055 4.840014 

0.80000 5.236540 5.578491 7.839562 X.701419 4.411693 
0.82000 5.250950 5.554493 7.880274 8.645962 4.429563 
0.84000 5.265460 5.531714 7.920708 8.592815 4.447430 
0.86000 5.280066 5.510070 7.960874 8.541830 4.465294 
0.88000 5.294763 5.489482 8.000783 8.492869 4.483153 

3.406987 
3.37992 1 

.3.354045 
3.329283 
3.305562 

2.995950 4.8 11774 
3.014787 4.78487 1 
3.033566 4.759215 
3.052288 4.734721 
3:070955 4.711314 

0~90000 5.309546 
0.92000 5.324412 
0.94000 5.339358 
0.96000 5.354393 
0.98000 5.367086 

5.469882 8.040442 
5.45 1206 8.079865 
5.433396 8.119067 
5.416410 8.158111 
5.397791 8.185761 

8.445805 4.501007 3.282818 3.089566 4.688924 
8.400536 4.518854 3.26099 1 3.108123 4.667487 
8.356954 4.536696 3.240026 3.126625 4.646946 
8.315024 4.554534 3.219866 3.145068 4627250 
8.263302 4.571489 3.201312 3.164298 4.607473 

14Y5 



14Y6 H. C. T~PAKOGLU and 0. A. ARNAS 

Table 2 
Ellipticity = @70000; Outer pipe flatness (B/A) = 0.34228 

Core 
size 

Insulated 
inner 
Wd 

Omega 
NUSSO 

Nli 

0~70005 4.491059 5.089366 4.794629 5.449662 4.346933 4.518858 3.965183 4.933647 
0.72000 4.510064 5.102802 4.808155 5.455865 4.368311 4.541335 3.991911 4.949810 
0~74000 4.526764 5.100856 4.82 1397 5.448053 4.386597 4.546712 4.01375 1 4.95003 1 
0.76000 4.542452 5.08899 1 4.835648 5.431993 4.403064 4.53993 1 4.03 1899 4.939641 
0.78000 4.557786 5.070258 4.851517 5.410816 4.418384 4.523867 4.04704 1 4.921649 

0.80000 4.573173 5.046750 4.869350 5.386615 4.432986 4.500580 4.059650 4.898146 
0.82000 4.588877 5.020005 4.889352 5.360887 4.447165 4.471644 4.070090 4.87068 1 
0.84000 4.605075 4.991183 4.911643 5.334729 4.461127 4.438306 4.078650 4.84044 1 
0~86000 4.621881 4.961177 4.936284 5.308954 4.475022 4.401573 4.085569 4.808346 
@88000 4.639366 4.930669 4.963294 5.284163 4.488955 4.362260 4.091052 4.775118 

0~90000 4.657567 4.900188 4.992665 5.260795 4.502999 4.321037 4.095277 4.741318 
0.92000 4.676500 4.870138 5.024368 5.239167 4.5 17206 4.278455 4.098400 4.707388 
0.94000 4.696161 4.840824 5.058356 5.219499 4.531609 4.234966 4.100562 4.673669 
0.96000 4.7 16540 4.812483 5.094594 5.201956 4.546229 4.190937 4.101880 4.64043 1 
0.98000 4.739222 4.786901 5.136788 5.190438 4.561822 4.145462 4.101264 4.608624 

Insulated 
outer Eaual wall temperature 
wall 

NUSSI NUSSO NUSSI 
Nil Nil NLi 

Outer flux 

Inner flux = 
-2 

NUSSO NUSSI 
Nli NU 

Inner flux 
2 

Outer flux 

NUSSO NUSSI 
NLi NM 

Table 3 
Ellipticity = 0.80000; Outer pipe flatness (B/A) = 0.21951 

Core 
size 

Insulated 
inner 
wall 

Omega 
NUSSO NUSSI NUSSO NUSSI NUSSO NUSSI NUSSO NUSSI 

NU Nli Nil Na NM Nli Nu Nil 

Insulated Outer flux 
outer Equal wall temperature 2 

wall Inner flux 

0.80005 4.745782 5.054832 4.956741 5.283583 4.645150 4.658596 4.367328 4.949586 
0~82000 4.756303 5.058862 4.96349 1 5.283 147 4.657370 4.669332 4.383815 4.95551 I 
0.84000 4.765008 5.050822 4.970147 5.271983 4.667047 4.665929 4.395927 4.948766 

0.86000 4.773000 5.034932 4.977784 5.254418 4.675288 4.652390 4.404769 4.933518 
0~88000 4.780833 5.013539 4.986899 5.232793 4.682672 4.63 1047 4.410971 4.912112 

090000 4.788851 4.988266 4.997776 5.208691 4.689569 4.603580 4.414977 4.886190 
0.92000 4.797277 4.9603 16 5.010583 5.183257 4.696234 4.571286 4.417125 4.856980 
0.94000 4.806261 4.930610 5.025416 5.157342 4.702848 4.535204 4.4 17689 4.825433 
0.96000 4.815904 4.899866 5.042326 5.131592 4.709542 4.496177 4.416892 4.792297 
0.98000 4.82642 1 4.868799 5.061670 5.106839 4.716483 4.454772 4.414797 4.758241 

Inner flux 
2 

Outer flux 

7. SPECIAL CASE OF CIRCULAR PlPES 
48(J,,+Jz+J4)=~(1-~8)-~(1-~6)t~ 

For circular concentric pipes, m = 0, the terms 
-~(1+w~)(1-W~)t~+~(1-~~,~)t~~-3(1-~tr~~)t1~, 

involved in equation (5.20) reduce to 
(DE), = 2(1-w), (DE), = 2<‘-“). (7.1) 

w 
(1 -w’) 

ll= 
logw ’ 

loo =~(l-Wz)(l+WZ-Lf), For a simple circular pipe, trl = 0. the terms in 

equation (7.1) further simplify, giving 

e;(l) = &[4-4u-3(1 +w2)u+4u2], 
kw = a. e:(l) = 4, I,, = --A, 

r,, = -&[3(1-o4)+4(1 -r&l+4(1 -d)tt 
+ 4w4 log W] , 

Je+Js+J4 = &, (DE), = 2, (DE), Z ’ (7.2) 
01 



Heat transfer for flow between two confocal elliptic pipes 

where (DE), E means that this term approaches its 

limits as (2/w). Substitution of equation (7.2) into 

equation (5.20) gives the outer Nusselt number for a 

circular pipe with a very thin central wire as 

1497 

For the special case of two concentric circular pipes 

and when w equals unity, the results are for the flow 

between two parallel plates. Since when w = 1 the walls 

are interchangeable, the values of Nu, and Nui for the 

same heating conditions on either wall must yield the 
same value. This property has been verified. Nu, = 

4gP 
ll-18(1-p)’ 

(7.3) 

The inner Nusselt number for this case is 

Nu,=cowhenp#l; Nui=Owhenp=l. (7.4) 

It is to be noted that for p = 1, the value of the inner 

Nusselt number as a function of w has a discontinuity 
near the origin. That is when w is slightly greater than 

zero, the inner Nusselt number becomes very large. 
When the selected values of p are used in equation 

(7.3) the Nusselt numbers on the outer wall are 
obtained as: 

For insulated central wire: 

/I = $ = 1, 
0 

NM, = ; = 4.3636; 

For equal wall temperatures: 

,U = 1, Nu, = ; = 4.3636; 

For insulated outer wall: 

/I = 0, Nu, = 0; 

For equidirectional heat fluxes and CJi = -&U, : 

p&!L 
4(l) 

= 2, Nu, = $ = 3.3103 ; 

For equidirectional heat fluxes and r/i = - 2U0 : 

I 00 
P= -e:(1)- - - 1, Nu, = g = 1.9200. (7.5) 

For the last three cases the central wire acts as a line APPENDIX 

heat source or sink of infinite strength. 101 = Aot+B,,u+D,,logo 

For circular concentric pipes, the numerical values of 
the Nusselt numbers on the outer and inner walls for 
five wall heating conditions are as given in Table 1 
and plotted in Fig. 2. These values agree with the data 
given in [2] to the extent of the number of significant 

digits as given in this reference. When w approaches 
unity, the Nusselt numbers approach to those values 
for a flow between two parallel plates which are heated 

or cooled according to the wall conditions considered. 
The first two of these limiting cases, as shown in 
Fig. 2, agree with those given in [l]. The other two 
are for equidirectional heat fluxes on the walls, as given 

1 
BiJ* =-(l-02) 

m4 

4 ( > 
1+- 

uJz 

where 

by equation (6.3). 

8. CONCLUSIONS 

Convective heat transfer in the 
confocal elliptic pipes is analyzed 
presented in analytical closed form. 

annulus of two 
and results are 

For the case of elliptic annular pipes this property 

prevails. However, the common value of the Nusselt 
number for o = 1 changes with different eccentricities. 
The reason for this is that only in the circular concentric 

pipes, does the flow approach the limiting case of flow 
between parallel plates. Whereas, in the case of confocal 
elliptic pipes, the local Nusselt number and the Nusselt 

number, as defined here for elliptic pipes, are not one 

and the same and they do not approach that of parallel 
plates. 

It is seen from Figs. 3-6, that some interesting 

optimum heat-transfer properties exist. For some 

engineering applications, these optima may prove to 

be useful. 

I. 

2. 

3. 

4. 

5. 
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m4c02 
Z. = 2m4+*(l-0,2)‘n14+32- 

uJ* (l+tf?)* 

(A.4) 

1 m4 
J2=-- 6(1+w2)(~2+~*~~+~2~og~) (A.5) 

where 

CONVECTION THERMIQUE LAMINAIRE ET PERMANENTE ENTRE DEUX 
TUBES A SECTIONS ELLIPTIQUES ET HOMOFOCALES AVEC GRADIENT 

LONGITUDINAL UNIFORME DE TEMPERATURE PARIETALE 

R&urn&On presente la solution mathematique de la convection thermique laminaire et permanente 
entre deux tubes a sections elliptiques et homofocales dans differentes conditions de chauffage, en 
utilisant les equations de Navier-Stokes et d’energie. On montre que le probleme est conditionne par 
un nombre caracteristique qui est le produit du gradient adimensionnel, longitudinal, uniforme de la 
temperature par&ale par le nombre de P&let. On obtient la valeur du nombre de Nusselt pour 

differentes formes de la section de passage. 

KONVEKTIVE WARMEUBERTRAGUNG BE1 STATIONARER LAMINARER 
STRGMUNG ZWISCHEN ZWEI KONFOKALEN ELLIPTISCHEN ROHREN MIT 

GLEICHFORMIGEN TEMPERATURGRADIENTEN IN LANGSRICHTUNG 

Zlsammenfassung-Die konvektive, stationare, laminare Warmeiibertragung zwischen zwei konfokalen 
elliptischen Rohren mit gleichformigen Temperaturgradienten in Langsrichtung wird unter verschiedenen 
Heizbedingungen in einer analytisch geschlossenen Form unter Anwendung der Navier-Stokes- und 
der Energiegleichung dargestellt. Es wird gezeigt, da0 eine charakteristische Zahl, das Produkt des 
dimensionslosen, gleichfiirmigen Wandtemperaturgradienten und der P&let-Zahl, das Problem beschreibt. 

Die Nusselt-Zahlen fur verschiedene Werte der Elliptizitat und fir verschiedene Abmessungen 
werden angegeben. 

KOHBEKTMBHblI? TEIIJlOO6MEH B CTAUMOHAPHOM JlAMMHAPHOM IIOTOKE 
MEXJIY JIBYMJl KOAKCMAJIbHblMM 3JIJlMfITMYECKMMM TPYBKAMM 

C IIOCTOJ-IHHblM IIPOflOJlbHbIM IPAAMEHTOM TEMIIEPATYPbI CTEHKCl 

Amroraqm- B maTbe npki~onmcn peweHkie sanaw KoHBeKTkdBHoro TennooGhletm ~;lah4~HapHo~r1 

UOTOKe MSU,y ilByMZ4 KOaKCMa,TbHblMM 3Jl,IHI,Tk,'leCKWMH Tpy6KaMM C rlOCTOIlHHblM npOnO.7bl,b,M 

r,,a4MeHTOM TeMne,,aTypblHaCTeHKe npt4 pa3Jl!-iYHblX yCJlOBMnX HarpCBa,nOnyqeHtloe B 3aMKHyTOV 

BML(e C HCnOnb30BaHMeM TOYHblX peL"eHM,% ypaBHeil#S HaBbe-CTOKCa M ypaBHeHM8 COxpaHeHMR 

meprm. nOKa3aH0, ~TO peureHkie 3anaw 3aBr4cMT 0T onHor0 xapaKTepwcTMqecKor0 YMCna -- 

npoM3BeneHm ~OCTOSIHHOTO 6e3pa3MepHoro rrpononbMoro rpanAeHTa TeMneparypbl kla cTw!Ke M 

'iMC"a neK.ne. nOflyVeHbl 3HaYeHUII YMC,?a HyccenbTa IUIR HeCKO!lbKWX 3HaWHLdi? 'I.,~,M"TL,~HOCT,, CI 

pa3MepOB BHyTpCHMe8 Tpy6KM. 

(A.6) 

(A.7) 

(A.8) 


